來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-04-23 15:30:49
數(shù)學(xué)中,常見的圖形運動有三種:旋轉(zhuǎn)平移和翻折。運動變化問題正是利用它們變化圖形的位置,引起條件或結(jié)論的改變,或者把分散的條件集中,以利于解題。這類問題注重培養(yǎng)學(xué)生用動態(tài)的觀點去看待問題,有利于學(xué)生空間想象能力和動手操作能力的鍛煉,這類問題的解題關(guān)鍵在于如何“靜中取動”或“動中求靜”。 平移、旋轉(zhuǎn)和翻折是幾何變換中的三種基本變換。所謂幾何變換就是根據(jù)確定的法則,對給定的圖形(或其一部分)施行某種位置變化,然后在新的圖形中分析有關(guān)圖形之間的關(guān)系。這類實體的特點是:結(jié)論開放,注重考查學(xué)生的猜想、探索能力;便于與其它只是相聯(lián)系,解題靈活多變,能夠考察學(xué)生分析問題和解決問題的能力;其中所含的數(shù)學(xué)思想和方法豐富,有數(shù)型結(jié)核方程的思想及數(shù)字建模,函數(shù)的思想,分類討論的思想方法等。 在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。“一定的方向”稱為平移方向,“一定的距離”稱為平移距離。
例1在直角坐標平面內(nèi),點o為坐標原點,二次函數(shù)y=x2+(k-5)x-(k+4)的圖象交x軸于點A(x1,0)點B(x2,0),且(x1+1)(x2+1)=8。 (1)求二次函數(shù)的解析式(2)將上述二次函數(shù)圖像沿x軸向右平移兩個單位,設(shè)平移后的圖象與y軸交點為C,頂點為P,求△POC的面積。 分析:拋物線的運動問題只需抓住頂點和開口方向這兩個要素的變化規(guī)律即可。一般地總是先配方使之成為頂點式后再求解。關(guān)于平移的變化規(guī)律是:平移—頂點改變(“左加右減,上加下減”),開口不變。 解:⑴由題意知x1,x2方程x2+(k-5)x-(k+4)=0的根則x1+x2=5-kx1.x2=-(k+4)由(x1+1)(x2+1)=-8即x1x2+(x1+x2)=-9得-(k+4)+(5-k)=-9 解k=5則所求二次函數(shù)解析式為y=x2-9 ⑵由題意,平移后的函數(shù)解析式為y=(x-2)2-9則點C的坐標為(0,-5),頂點P的坐標為(2,-9)所以△POC的面積S=×5×2=5二、翻折 翻折是指把一個圖形按某一直線翻折180﹤后所形成的新的圖形的變化。 關(guān)于翻折還有二個基礎(chǔ)知識點 1、一個圖形沿一條直線翻折,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就叫做這個圖形的對稱軸。
2、平面上的兩個圖形,將其中一個圖形沿著一條直線翻折過去,如果它能夠與另一個圖形重合,那么說這兩個圖形關(guān)于這條直線對稱,這條直線就是對稱軸。解這類題抓住翻折前后兩個圖形是全等的,弄清翻折后不變的要素。 翻折在三大圖形運動中是比較重要的,考查得較多。另外,從運動變化得圖形得特殊位置探索出一般的結(jié)論或者從中獲得解題啟示,這種由特殊到一般的思想對我們解決運動變化問題是極為重要的,值得大家留意。比如2004年畢業(yè)考最后一題中函數(shù)和幾何的綜合題中的求定義域的問題,這里的特殊位置實際上就是運動中的一種“靜態(tài)”要素。 三、旋轉(zhuǎn)在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度成為與原來相等的圖形,這樣的圖形運動叫做圖形的旋轉(zhuǎn),這個定點叫做旋轉(zhuǎn)中心,圖形轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。圖形旋轉(zhuǎn)時,圖形中的每一點旋轉(zhuǎn)的角都相等,都等于圖形的旋轉(zhuǎn)角。 一個圖形繞著某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與原來的圖形重合,那么這個圖形叫中心對稱圖形,這個點叫做對稱中心。
例2如果一個正方形繞著它的中心旋轉(zhuǎn)后與原圖形重合,那么小于360°的一個旋轉(zhuǎn)角是度(2003年畢業(yè)考) 解析:此題較為簡單,屬考查概念的基本題360/5=72,為72度。
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看