來(lái)源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-04-23 16:42:16
初中幾何公式定理總結(jié) 初中幾何公式:線 1同角或等角的余角相等 2過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 3過(guò)兩點(diǎn)有且只有一條直線 4兩點(diǎn)之間線段最短 5同角或等角的補(bǔ)角相等 6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8如果兩條直線都和第三條直線平行,這兩條直線也互相平行 初中幾何公式:角 9同位角相等,兩直線平行 10內(nèi)錯(cuò)角相等,兩直線平行 11同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13兩直線平行,內(nèi)錯(cuò)角相等 14兩直線平行,同旁內(nèi)角互補(bǔ) 初中幾何公式:三角形 15定理三角形兩邊的和大于第三邊 16推論三角形兩邊的差小于第三邊 17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180° 18推論1直角三角形的兩個(gè)銳角互余 19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23角邊角公理有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 初中幾何公式:等腰三角形 30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等 31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊 32等腰三角形的頂角平分線、底邊上的中線和高互相重合 33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35推論1三個(gè)角都相等的三角形是等邊三角形 36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形 37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38直角三角形斜邊上的中線等于斜邊上的一半 39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a+b=c,那么這個(gè)三角形是直角三角形 初中幾何公式:四邊形 48定理四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180° 51推論任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等 54推論夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分 56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形 初中幾何公式:矩形 60矩形性質(zhì)定理1矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2矩形的對(duì)角線相等 62矩形判定定理1有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2對(duì)角線相等的平行四邊形是矩形 初中幾何公式:菱形 64菱形性質(zhì)定理1菱形的四條邊都相等 65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1四邊都相等的四邊形是菱形 68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形 初中幾何公式:正方形 69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分 73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 初中幾何公式:等腰梯形 74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對(duì)角線相等 76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對(duì)角線相等 初中幾何公式:等分 78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半 82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h 83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d 85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n=?0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例 87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例 88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS) 94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比 97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比 98性質(zhì)定理3相似三角形面積的比等于相似比的平方 99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值的梯形是等腰梯形 初中幾何公式:圓 圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104同圓或等圓的半徑相等 105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓 106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線 107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109定理不在同一直線上的三個(gè)點(diǎn)確定一條直線 110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112推論2圓的兩條平行弦所夾的弧相等 113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等 115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑 119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角 121①直線L和⊙O相交d﹤r ②直線L和⊙O相切d=r ③直線L和⊙O相離d﹥r(jià) 122切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對(duì)邊的和相等 128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角 129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等 131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng) 132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135①兩圓外離d﹥R+r②兩圓外切d=R+r ③兩圓相交R-r﹤d﹤R+r(R﹥r(jià)) ④兩圓內(nèi)切d=R-r(R﹥r(jià))⑤兩圓內(nèi)含d﹤R-r(R﹥r(jià)) 136定理相交兩圓的連心線垂直平分兩圓的公共弦 137定理把圓分成n(n≥3): ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n 140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng) 142正三角形面積√3a/4a表示邊長(zhǎng) 143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144弧長(zhǎng)計(jì)算公式:L=n∏R/180 145扇形面積公式:S扇形=n∏R/360=LR/2 146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看